Topic Test 1 Mark Scheme
 Properties of polygons - Higher

Q Answer	Mark	Comments		
$\mathbf{1}$ $a+b=c$ B1 2(a) $360 \div 6$ M1 60 A1 2(b) 120 B1				
:---				

$\mathbf{3}$	One line of symmetry	B1	

4(a)	Parallelogram and trapezium	B1	
4(b)	All sides not equal or Diagonals do not cross at right angles	B1	
	No right angles or All angles not equal	B1	
	Diagonals bisect each other	B1	

Q	Answer	Mark	Comments
5	Alternative method 1		
	Exterior angle Octagon $=45$	B1	
	Exterior angle Pentagon $=72$	B1	
	27	B1	
	Alternative method 2		
	Interior angle Octagon $=135$	B1	
	Interior angle Pentagon $=108$	B1	
	27	B1	
6	$360 \times\left(\frac{1}{2}-\frac{n}{2}\right)$	B1	
7	$(180-100) \div 2$ or 40	M1	
	$360 \div$ their 40	M1dep	
	9	A1	
8	$\begin{aligned} & E D C=540 \div 5 \text { or } 108 \\ & \text { and } E D B=1440 \div 10 \text { or } 144 \end{aligned}$	M1	
	$B D C=360-$ (their $108+$ their 144) or 108	M1dep	
	$D B C=D C B=(180-\text { their } 108) \div 2$ or 36	M1dep	
	Ext angle $A B$ produced $=36$, hence $A B C$ is a straight line	A1	Clear explanation why $A B C$ is a straight line.

